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A definition of superposition relation for the statistical operators is proposed 
which is equivalent to the one of Varadarajan. It is found that the superposition 
relation is preserved under a general linear dynamics and under tensor product. 

1. T H E  S U P E R P O S m O N  RELATION 

It is well known that the pure states of a purely quantum (e.g., without 
superselection rules) physical system Y. with separable complex Hilbert 
space H are represented in the standard formulation of quantum me- 
chanics by the rays Irk] ( f f E H )  of H (Dirac, 1947). In that context the 
superposition relation for the pure states is expressed by the fact that the 
normalized to one linear combination of representative vectors ~k E[~k] 
( k ~ L  I countable), namely, the relation 

tp= Zkc/?pk (1.1) 

produces new pure states which are different, in general, from the original 
o n e s .  

This assumption has, in particular, the consequence that the dynamics 
which the physical system undergoes is provided by the Schr6dinger 
equation (Dirac, 1947), which, owing to its linearity, preserves the super- 
position relation for the pure states. 

In quantum statistical mechanics instead the functions that are used 
to represent the states of the physical system are the so-called statistical 
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operators (or density operators) on H, namely, the positive trace class 
operators on H with trace one K(H). By decomposing a statistical opera- 
tor p EK(H) in terms of one-dimensional projections (repeating the eigen- 
values if necessary) 

P=~'i'YeP~, (11 ~11--~ 1) (1.2) 

the physical interpretation of P is that it represent the state of E as a 
statistical mixture of the pure states [+i] with relative frequency 7i (i-- 
1,2,3 . . . .  ). 

One could then ask whether it is possible to give a notion of super- 
position directly for the statistical operators. 

In this note we give a positive answer to that question in the sense that 
we propose an extension of Dirac's superposition of pure states to the 
statistical operators. 

More precisely, we say that a statistical operator pEK(H) is a 
superposition of the family of statistical operators ( p " ) c K ( H )  if, once the 
p~'s have been decomposed in terms of one-dimensional projections 

Pa=~kT~P~ 

it comes out that every pure state [ffi] obtained from p as in (1.2) is a Dirac 
superposition of pure states of the family ([~k~]). It is immediate that the 
given definition of superposition is equivalent to the assumption that p is a 
superposition of the statistical operators (p")  if and only if 

[p]~< k / [ p  ~] (1.3) 
0/  

where [p] denotes the range of p as an operator in H; V~[p ~] stands for the 
closure of the linear span generated by the subspaces [p~] of H and < 
stands for set inclusion. 

Before testing the validity of our definition of superposition in the 
case of the dynamics and in the coupling of physical systems we want to 
show that, as a matter of fact, our definition is equivalent to another 
definition of superposition which has been proposed for the first time (as 
far as the author knows) by Varadarajan (Varadarajan, 1968) in the 
context of the logic approach to quantum mechanics. 

According to this approach, when applied to the Hilbert model, the 
closed subspaces L(H) of H are interpreted as representing the lattice of 
equivalent classes of yes-no experiments (experimental propositions or 
simply propositions) on Y,. The states are represented in that context by the 
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o-additive measures with total 
functions s: L(H)--)[0, 1] with 
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mass 1 S(H) on L(H), namely, by the 

(i) s(H)=l 
(ii) s(Vixi) = Z,s(x,) (1.4) 

where (xi) is any countable family of mutually orthogonal subspaces of H. 
According to Gleason's theorem (Gleason, 1957) for every s e S(H) 

there is one and only one statistical operator p e K(H) such that 

s(x)=sp(x)=TrpP ~ (1.5) 

px being the orthogonal projection on H with range x. When applied to 
the Hilbert model, the definition of superposition given by Varadarajan is 
as follows. The state p e S(H) is said to be a superposition of the states 
{soa ) e S(H) if 

or equivalently 

Trp"px=OVa~Trppx=o, x e L ( H )  (1.6) 

Tro~P y = 1Va~TrpP y= 1, y EL(H)  (1.7) 

The last relation (1.7) can be equivalently written as 

L(o)DL((oa)) (1.8) 

where for every D c K ( H )  it has been defined 

L ( D ) = ( x e L ( H ) :  TrePX=IVoeD) = -- ('~ L(o) (1.9) 
oED 

By using the spectral decomposition of a density operator, it is not difficult 
to show that the following formula holds: 

L ( D ) =  ( x e L ( H ) :  pxp=p} (1.10) 

From this we have the further properties 

x EL(D),  y e L ( H ) ~ x W y  e L(D) 

x, y e L ( D ) ~ x A  y EL(D)  

A L ( D )  =- A x e L ( D )  
xEL(D)  
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that is, by using the language of the lattice theory, L(D) is a dual principal 
ideal (Birkhoff, 1967) of the lattice L(H), so that it can be equivalently 
represented as the set of propositions 

L(D)={xr AL(D)<x} (1.11) 

Moreover there also holds (Gorini and Zecca, 1975; Berzi and Zecca, 
1974) the formula 

AL(D)= V [o] (1.12) 
o E D  

By taking into account the last considerations we have then that the 
relation (1.8) holds if and only if the following holds: 

AL(p)= [p]  < AL({p~}) = V [O ~] 

which is nothing other than our definition (1.3) of superposition of statisti- 
cal operators. The proof that our definition of superposition coincides with 
the one of Varadarajan is thus completed. 

2. SUPERPOSITION, DYNAMICS, AND TENSOR PRODUCT 

We want now to show that as the superposition of pure states is 
preserved under a linear evolution of the physical system also here the 
superposition relation of the statistical operators is preserved under the 
most general linear (possibly irreversible) dynamical evolution to which the 
physical system is subjected. To do this we need a definition. 

Definition. A dynamical map B for the physical system Y, is a map 
from the density operators K(H) into themselves which is affine, namely, 
such that 

B(ap+(1-a)o)=aBp+(1-a)Ba, p,a~K(H),aE[O, 1] 

(/~ iS not assumed to be onto nor one to one). 

In Zecca (1980) the following result has been shown. 

Proposition. Any dynamical map B of the physical system has the 
property 

L(p)DL(D)~L(Bp)~L(BD), peK(H), DcK(H) 

From the equivalence shown above between the relations (1.3) and 
(1.8) we have thus reached our goal. Indeed a dynamical evolution for the 
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physical system for which a statistical interpretation is allowed is described 
in general in terms of a one-parameter family t---~B t of dynamical maps 
with the interpretation that if p is the state of the system at time t = 0 then 
BtP represents the state of the system at time t. 

A general example of a one-parameter family of dynamical maps is 
the one given by the motion of the physical system governed by a 
homogeneous generalized master equation, which gives a formally exact 
description of the time evolution of a quantum open system coupled to its 
surroundings (Haake, 1960; Lanz, Lugiato, and Ramella, 1971). 

Since B t has not been assumed to be, in general, a bijection, the 
superposition of the statistical operators is preserved also under an irre- 
versible dynamical evolution. For instance, t---~B t (t>~O) could be the 
one-parameter semigroup of dynamical maps obtained from the solution 
of a Markovian master equation. These equations are widely used in the 
phenomenological treatment of open systems and are also a useful tool to 
approximate in the weak coupling limit (Davies, 1974) or in the singular 
reservoir limit (Hepp and Lieb, 1973) the generalized master equation (see 
also Frigerio, Gorini, Kossakowski, Sudarshan, and Verri, 1978 and refer- 
ences therein). 

A special case of the above-mentioned family t---)B t could be the 
weakly continuous one-parameter group of unitary automorphisms of 
K ( H )  given by the motion of a strictly isolated physical system, namely, 

s,p  = u, pd, + 

where t---~ U t is a weakly continuous one-parameter group of unitary opera- 
tors on H, whose generator, which exists by Stone's theorem (Reed and 
Simon, 1972), represents the Harniltonian of the system. We remark here 
that a dynamical evolution for the physical system which preserves the 
superposition relation for the statistical operators need not to be a linear 
evolution, as has been pointed out by the mathematical nonlinear example 
in Zecca (1976). 

Finally we want to check that our superposition relation for the 
statistical operators is compatible also with the coupling of physical 
systems, namely, it is preserved under tensor product. To see this let ~ be a 
second irreducible quantum physical system with separable Hilbert space 
/~. Let then p ~ K ( H )  be a superposition of the statistical operators 
D c K ( H )  for ~ and t5 ~ K ( H )  be a superposition of the statistical opera- 
tors D c K ( H )  for F2. We have then equivalently, according to our original 
definition of superposition of statistical operators, the assumptions 

a e D  a e D  



634 Zer  

By using the property of the tensor product function there follows 

o E D  a ~ D  

6 e b  6eb  

which again by our definition of superposition means that P| is a 
superposition of the set of states D |  (a| o ~ D ,  6 ~ / ) ) ,  that is the 
superposition relation is preserved under tensor product. 

We have shown that the superposition relation for statistical operators 
is preserved under any (linear) dynamics of the physical system and under 
the coupling of physical systems. These reasons should be sufficient to 
make the definition of superposition a good definition. 

REFERENCES 

Berzi, V., and Zccca, A. (1974). Communications in Mathematical Physics, 35, 93. 
Birkhoff, B. (1967). Lattice Theory. American Mathematical Society, Providence, Rhode 

Island. 
Davies, E. B. (1974). Communications in Mathematical Physics, 39, 91. 
Dirac, P. A. M. (1947). The Principles of Quantum Mechanics. Clarendon Press, Oxford. 
Frigerio, A., Gorini, V., Kossakowski, A., Sudarshan, E. C. G., and Vcrri M. (1978). Reports 

in Mathematical Physics, 13, 149. 
Gleason, A. M. (1957). Journal of Mathematics and Mechanics, 6, 885. 
Oorini, V. Zecca, A. (1975). Journal of Mathematical Physics, 16, 667. 
Haake F. (1960). in Springer Tracts in Modern Physics. Springer Verlag, Berlin. 
Hepp, K., and Lieb, E. (1973). Helvetica Physica Acta, 46, 573. 
Lanz, L. Lugiato, L., Ramella, (3. (1971). Physica, 54, 94. 
Re.cA, M., and Simon, B. (1972). Methods of Modern Mathematical Physics. Academic Press, 

New York. 
Varadarajan, V. S. (1968). Geometry of Quantum Theory. Van Nostrand, Princeton. 
Zccca, A. (1976). International Journal of Theoretical Physics, 15, 785. 
Zccca, A. (1980). The Superposition of the States and the Logic Approach to Quantum 

Mechanics, Milano IFUM 229/FT, International Journal of Theoretical Physics (to be 
published). 


